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Introduction

1. Brief review of twistor and minitwistor spaces.

2. Witten's observations on N = 4 supersymmet-
ric Yang-Mills theory.

3. Mass terms to the scalars and fermions.

4. Dimensional reduction to D = 3.

5. Physical interpretation in D = 3 of Witten’s
holomorphic curves.

6. More mass terms in D = 3.



Twistor space [review]

I will begin with a review of twistor space, mostly
following [Paul Baird].

The twistor transform uncovers holomorphic struc-
ture underlying free field equations.

Simplest example:
A harmonic function on R2:
02¢p 9%

0 = Ao¢:.=
¢ 8x2 T 522 8x2

= o¢(x1,72) = f(z1 +ix2) + g(x1 —ix2).

Set

z = x1 + 1o, Z .= x1 — 1To.

Twistor space for R? is CUC, the complex z-plane
together with the complex z-plane.



Harmonic functions on R3 [review]

There is a map from harmonic functions on R3 to
holomorphic functions on minitwistor space TCP!.
[Hitchin 1982]

Again, I will follow [Baird]. We are looking for so-
lutions to

0% 0%  9%¢
O:A¢'_ax2+ax2+

For fixed 6, and any holomorphic function f on C,

8:103

0= Af(x1 + ixrsSin 6 + ix3Cc0s0).

We can construct more complicated harmonic func-
tions by [Whittaker]

2
¢(x1, o, :C3) = /O " F(CIJl + 2xosin 6 + 12£3COS 0, 0)d0



Spherical coordinates [review]

Let’'s change to a basis of spherical harmonics.
Define spherical coordinates
x1 =rcCcosu, xp=rSinusSinv, x3=rSinuCoSv.

Then, for [ > 0, and |m| <, the spherical harmon-
iIcCs can be written as

V@4 1)U - m)!(I +m)!
47r3/243m]) :

27 )
/O do gzmQ(xl + txoSin 6 + 1x3COoS 9)6,
F

rliflm(ua 'U) —




Minitwistor space [review]

Whittaker's formula had the following integrand:

F(xq1 + ixosin 0 + ix3cos b, 6)
It is more convenient to change variables
w = 2" (x1 + izosin 0 + ix3C0Sh), 2= e,

Given the analytic function F', it is convenient to
define a related analytic function ¢ by

o(e’,w)i=e " F (e w, 6).

We assume that we can extend ¢ to an analytic
function ¢(z,w) defined in a neighborhood of the
circle |z| = 1. Whittaker's formula can now be
rewritten as

8(F) = 55 § (2 —lwz — iw3] + 2201 + 2[5 + iws])dz.

[z

TN
L




Mintwistor space and TCP! [review]

0(8) = g § (e lop — iwgl + 2201 + 22lag + iaa])de
The contour integral for ¢ does not change if we

modify

o(z,w) — ¢(z,w)+ [holomorphic at z = 0]
+[holomorphic at z = o]

provided we define the good holomorphic coordi-
nates at z = oo as

Then, a holomorphic function

o(z,w) = 22 (¢, w')

will give

#(&) = 55 § ¢ (&~ Blea—ias]+Zor oo tizg DE = 0.



Picture of Minitwistor space

TCP!

Minitwistor space is the tangent space of CPL.

Two patches:

Z£0| z#%#0

2z Z=1/z

w w' = w/z2




Minitwistor transform

So, the minitwistor transform ¢(z,w) transforms
like a meromorphic section of the line-bundle O(—2)
over TCPL.

It is defined up to local holomorphic sections at
z=0 and z = 0.

— It is an element of the sheaf cohomology
HI(TCP!, 0(-2)).



Geometrical interpretation [review]

Minitwistor space has a simple geometrical inter-
pretation {that I learned from P. Baird’'s review}:

TCPL is the space of oriented lines in R3.
R3 .
n

e —
A
O

n? —in3 1
z = T+l € CP* ~CU {oc}
—(14+n)(AZ2 —iA3)+(n?2 —in3)Al
w =

(14 nt)?

(By stereographic projection.)
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Twistor space [review]

All this also works for R*. We are looking for
harmonic functions

4 a2
09
O0=A¢:= 3, ——
k=1 9%},
Any holomorphic function of two complex variables

of the form

f(x1 +iz2, 3 + i14)

IS harmonic. This is also true for any other choice
of complex structure. A generic choice of complex
structure is described by [\, \2] € CPl. For this
complex structure we require that

A1 (5151 + ixz) 122 (-56'3 + iw4>

xr3 + 124 1 — XD
be analytic. Then

fpi a2 (@1, 2,23, 4) 1= f(\ [z1 + izo] + A [—w3 + iz,
AMzz + izg] + N2[xy — iz)).

IS harmonic.
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Spinor notation

We can get any harmonic function on R% by inte-
grating over different complex structures

#(2) = § f1,.(wi 2)dz.
We set

(:U ) — (:Bli £B12> F— (331 +i£132 —333+’i:134> .

Toi Tod r3 +1xq4 IT1— 1T

a=1,2, d=1,2, xao}:x'ua,uad'

Then,

(z) = 74 dz (g, \)

P =—TaaA"
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Twistors and shockwaves

For R%:2 the twistors are real.
(z,) = (%11 T12) .= (P1 T 22 —T3+ 24}
Toi Tos T3+ T4 T1— T
and the shockwave
D@t ah) o 82 (oA F 1)
solves the wave equation

2 2 2 2
o P PO P00
Ox1

t = (u,\) denotes a D = 4 twistor.

So, instead of working in the usual basis of plane-
waves

Py (z) = e

in twistor theory we work in a basis of shockwaves.

Twistor space, for this example, is RP3 \ RP! with
projective coordinates

L)\l 72 =)2 283 =ui,Z4 :“2’
(z1,22,723,2%) ~ (¢21,¢22,¢c23,¢c2%),
(z1,22%) # (0,0).
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Background

e Witten discovered remarkable properties of per-
turbative scattering amplitudes in N = 4 SYM
in D=4,

e Switching from a basis of plane-waves to a
basis of shock-waves (twistors), Witten found
that amplitudes vanish unless certain algebraic
conditions (on the incoming and outgoing twistors)
hold.

e Witten proposed that a topological B-model
with target space CP3l4 (super twistor space)
reproduces the SYM amplitudes. Certain non-
perturbative effects (D1-instantons) are a cru-
cial ingredient.
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N = 4 Super-Yang-Mills theory
The Lagrangian of N = 4 super Yang-Mills theory:

1 1
gL = tr{ZFWFW +5 S D! D!
I

1

|

I};][¢I, 712 + %j WA Bop 5

+ > (ThpPlvaw®* + T A8 y 403 },
AB,1I

symbol | spacetime | SU(4)g
bl scalars

A | (L-)spinors

Y A4 (R—)spinors

NG
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Mass terms

The Lagrangian of mass-deformed N = 4 super
Yang-Mills theory:

1 1
g°L = tr{ZFWF“V +-3 D, ! DFo!
I

S, d/12 + ; WA Bop 5

I,J

+ > ('_{43"’[1%4 pBx 41! ABCDIZPA@?#%)
AB,I

+ 3 MagplePe+ S MABY 4509
A,B A,B

+ (’mQ)IJCDICDJ},

1
4

symbol | spacetime | SU(4)g
! scalars 6
4 | (L-)spinors 4
Yaa | (R-)spinors 4
MAB _ 10
Map - 10
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Notation

e Shock-waves on R%2 (or C*):

(@t 1) o< 8220 + 116)

a=1,2, a=12, =z, =71"0,4s

e t = (i, )\) denotes a D = 4 twistor.

e Twistor space is CP3\ CP! with projective co-
ordinates
(z1,22,23,2%) ~ (¢Z%,¢2°,¢23,02%),
(z1,2%) # (0,0).
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Picture of twistor space

CP3 \ CP!

Twistor space is a fibration of C2 over CP1.

Two patches:

M £0 A2 £ 0

Z=X/\1 | Z' =)/ =1
X=pl/\ | X' =pt/ =%
Y =p2/A |V =p?/N2 =%




Supertwistor space

For N =4 SYM, Witten added four anticommut-
ing coordinates Wl ... w4

s
s CPoi\ CpH

Supermanifold
[Sethi, Schwarz, Movshev & Schwarz,

%% Popov & Samann & Wolf, ...]
CP!

Super-twistor space is a fibration of C214 over CP!.

Two patches:

A £0 A2 £ 0

Z =\ /A1 Z'=MN/\=1/z
X = pt/M X' =pr/\°=X/Z
Y = pu? /A1 Y = p? /N2 =Y/Z

OA=vwA/)N\l | ot =ui/\2=04/z
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Superfields

The superfield A combines the twistor transforms
of gluons, fermions and scalars [Witten]:

A(X,Y,Z,0) =
- 1
A+ 0,07+ 5chBeA@B
1

1
+—ea sopotefefel + ~aGea sop©tefetel
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Superfield components

A(X,Y, Z) (4+1) helicity gluons (F = F)
o04(X,Y,Z) | (41/2) helicity fermions (144)
oAp(X,Y,Z) | (O helicity) scalars

04(X,Y,Z) | (—1/2) helicity fermions (¢4)

G(X,Y, Z) (—1) helicity gluons (F = —F)

The contour integrals should be invariant under

A — A+ (holomorphic at Z # 0)
+ (holomorphic at Z # o)

[In other words, A is an element of sheaf coho-
mology H1(---).]
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Chiral Fermion Mass Term

Claim #1:

At O(¢9), adding a chiral mass term:
5L =3 M Py
A,B
IS equivalent to a certain super-complex structure
deformation of supertwistor space CP34\ CPI4.

Note: The chiral mass term breaks CPT, but all

we are doing here is summing Feynman diagrams.
We don't care about unitarity . ..
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The ©3 Supercomplex Structure Deformation

o

M £0

e xy e

)z

CP!

coordinates for A2 # O

N
|

R
|
N g N

o =lot+ oM PegoppOCOPerl
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Wave-functions with the mass term

In momentum space, the free Dirac equation with
a chiral mass term is

Pac¥™ = M Pysp,  pag¥i = 0.
Like the massless case (MAB = 0),

o

p2 =0 — Pag = AaAg.

For the massless case, the general solution is:

Yaa = 204N N), Y4 = dao (N N).
For the massive case, the general solution is:
VoA = Aa04, i = Ao + MAPn40p,

where n, is some spinor that satisfies
T]a)\a = 1.

(Note that n, is not globally defined!)

Claim #1 can be justified by analyzing the be-
havior of the twistor-transform of this solution at
/Z = 00. [Chiou & OG & Hong & Kim & Mitra]
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Holomorphic Curves of Degree d =1
In the undeformed twistor space a holomorphic

curve of degree d = 1 in CP3l4 is given by a set of
linear equations [Witten]

X = =Ty —2piZ, Y =—x15 — 2957,

04 =0 — 057,

where z,,; and 04 are moduli.

With the chiral mass term, the last equation has
to be replaced with the quadratic expression

04 = —04 — 047 + MABegopptS 6565 72

(In order to have *“good” behavior near Z = ~o.)

This can be compared with amplitudes . ..
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3-Scalar correction

Claim #1’:

The above super-complex structure deformation
of supertwistor space CP3l4\ CP1l4 is equivalent to
adding a chiral mass term and a 3-scalar interac-
tion:

5L =tr{ > MAPy450% + gMT K p10 1005}
AB

IJK _ CDEF[I ~J K] ,,AB

E'B = CSUGRA field [Berkovits & Witten]

MAB — <EAB>
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Dimensional Reduction

Can we learn more about mass terms by dimen-
sionally reducing to D = 37

27



Dimensional Reduction to D =3

We dimensionally reduce to D = 3 by gauging the
translation generator Pjy.

Gauging would make P, = 0 identically. In an
appropriate basis, P, acts as

SN = 0, Su® = e\,

(Note that in D = 3 there is no distinction between
a and a.)

CP3 \ CP! TCP!
C2 C

etk e w=

After gauging P, we are left with minitwistor space
TCPL. [Hitchin]
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Minitwistor space

Minitwistor space is TCP! [Hitchin]. It can be pa-
rameterized by the P,-invariant

)\1 i)\2_ 241
pu— A w == IU/ 'U/ >\

22 (A2)2
For signature R1:2 the minitwistor space is TRP1
and z,w are real.

z

The corresponding shock-waves are

&(z0, x1 2%) = §(w+ [22 — 2°] — 2212 — [22 + 20]29)
Super-minitwistor space can be covered by two
patches with transition relations:

1 1 1
2 == w = Zw, 9’A = ~p4.
z z z
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Helicity in D = 3
The Lagrangian of this D =3 SYM is

1
g3L = tr<4F F 4 = Z Do Di! — Z [, d7)?
z—l I J

+ Z x&o'oP iXG+ D Gaﬁrlbq’IXan)
a,b,l

Onshell, instead of the gauge field we get two
scalars:

A4 p— ¢7, sz - Gijlal¢8
Helicity + refers to onshell states with

= 455,
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Holomorphic curves

At tree-level, Witten's discoveries about D = 4
SYM amplitudes and holomorphic curves in twistor
space immediately imply similar results for D = 3.

For example, MHV amplitudes correspond to quadratic
sections of TCP!:

w = —[:132 — :L'O] 4+ 2zl + [:c2 - CCO]ZQ.

For D = 3, there is a correspondence [Hitchin]:

holomorphic curves Real minimal area
in minitwistor space | <— surfaces
TCPL in physical space R3

For signature R1:2, this correspondence translates
to an amusing physical interpretation for the holo-
morphic curves.
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Algebraic curves in TRP! and filaments in R1:?

0=> 2w’ Expand near (wg, zg9) =

r,s

w = wg + a1(z — 20) + ax(z — 29)° + O(z — 20)>

We approximate the bt

algebraic curve locally w = f(2)
by parabolas. Each 2
parabola corresponds to z il

an MHV curve. .

Each parabola therefore corresponds to a point #
(#,2",...) in physical space R}2. The collection

of the points &, &, Z",... forms a filament F.

The filament is a null worldline in RL:21

T« 7 . |R2!  The outgoing waves of the
\\\ /// scattering process can now
\\\ /// be described as a physical

NS disturbance that is emanat-

ing from the filament F.

32



Twisted Dimensional Reduction

We can get D = 3 mass terms by gauging a
linear combination of translation and SU(4) R-
symmetry:

Py — MAgR4B = 0.
R 4B is the R-symmetry charge. E.g.,

[R4P,4C] = 6§45
For example, Dirac’s equation becomes

4 3
0= Y TH? =3 ot 4+ i gyB.

There is also a mass term for the scalars

0= 8i¢[AB]ai¢[AB] + M4 oM BD¢[AB]¢[CD]>
where

CD
P A 6ABCD¢

Repeating the steps as before, we get instead of
minitwistor superspace . ..
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D = 3 Massive Super-mini-twistor space

Repeating the steps as before, we get the super-

mini-twistor target space for the massive D = 3
SYM in the form

1 %% 1 %%
Z' ==, W =—, @’:—exp<—M>@
Z Z Z Z
L Ee <
col4
} ©
C w
The four anticommuting
X ©4 directions are fibered
Cpl in a nontrivial way over
the W-plane.

How is this related to direct dimensional reduction
of the mass term deformation

A 1 1

that we found previously?
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D = 3 Infinitesimal Mass Terms

For infinitesimal mass terms in D = 3 we get the
following complex structure deformations

: A %%
SMA gt WGP = 60" = s 4 B?eB,
- 1
SMAPYGep e, = 504 = 5MAB6ZQEBCDE@C@D@E

The vector fields on the RHS are the only trans-
lationally invariant (in cohomology) §®@’ deforma-
tions (unless we allow anticommuting parameters).

The translation generators act as

P = ’I;Zi,

oW 5
P, =P P — —1——
o >+ 1P3 %ama/,

P =P5 —iPs = iZ%°—_.
2 3 W

R-symmetry [Spin(7) in D = 3] should transform
one mass term to the other. How does Spin(7)
act?
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Summary

e In D = 3 we found that

1 %4 1 %%
7' ==, = —, e = —exp(—M)@
Z Z Z Z
corresponds to a mass term.
e In D =4 we found that
1A A CaDAE
© —@ —I— 622 GBC’DE@ ShlS)

corresponds to a chiral mass term.

e In D = 3 holomorphic curves in twistor space
correspond to filaments in spacetime from which
the scattered wave-functions originate.
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Open issues

D = 3 at 1-loop~?

The Iimit M = o7

The Spin(7) R-symmetry ...

Mirror symmetry . ..
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